Numerical detection of structurally unstable connecting orbits via the Conley index theory

نویسنده

  • Zin ARAI
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigorous Computations of Homoclinic Tangencies

In this paper, we propose a rigorous computational method for detecting homoclinic tangencies and structurally unstable connecting orbits. It is a combination of several tools and algorithms, including the interval arithmetic, the subdivision algorithm, the Conley index theory, and the computational homology theory. As an example we prove the existence of generic homoclinic tangencies in the Hé...

متن کامل

A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems

We present a numerical method to prove certain statements about the global dynamics of infinite dimensional maps. The method combines set-oriented numerical tools for the computation of invariant sets and isolating neighborhoods, the Conley index theory and analytic considerations. It not only allows for the detection of a certain dynamical behaviour, but also for a precise computation of the c...

متن کامل

Existence of Innitely Many Connecting Orbits in a Singularly Perturbed Ordinary Dierential Equation

We consider a one-parameter family of two-dimensional ordinary di erential equations with a slow parameter drift. Our equation assumes that when there is no parameter drift, there are two invariant curves consisting of equilibria, one of which is normally hyperbolic and whose stable and unstable manifolds intersect transversely. The slow parameter drift is introduced in a way that it creates tw...

متن کامل

On transition matrices

In the Conley index theory, transition matrices are used to detect bifurcations of codimension one connecting orbits in a Morse decomposition of an isolated invariant set. Here we shall give a new axiomatic definition of the transition matrix in order to treat several existing formulations of transition matrices in a unified manner.

متن کامل

Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation

This paper presents a rigorous numerical method for the study and verification of global dynamics. In particular, this method produces a conjugacy or semi-conjugacy between an attractor for the Swift-Hohenberg equation and a model system. The procedure involved relies on first verifying bifurcation diagrams produced via continuation methods, including proving the existence and uniqueness of com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007